Fixed
point iteration is one of the methods to calculate the root of the equation. It
is also based on the numbers of iteration.
then using iterative recursive formula others
values are calculated as:
xi+1 = g(xi) where i=0,1,2,3,…..
and x0 is guessed initially.
Program Code Implemented in C++
#include<iomanip>
#include<iostream>
#include<math.h>
#define
e 0.00001
using
namespace std;
float
g(float a)
{
return(0.5*((1/(a*a+a))+a));
}
int
main()
{
float x1,x2,x3;
int i=1;
cout<<"The given function
is f(X)=x^3+X^2-1"<<endl;
cout<<"Enter your initial
guess:";
cin>>x1;
cout<<setw(2)<<"No."<<setw(12)<<"x1"<<setw(30)<<"x2=0.5((1/(X^2+X))+X)"<<setw(14)<<"Upgrade"<<endl;
do
{
x2=g(x1);
cout<<setw(2)<<i<<setw(13)<<x1<<setw(30)<<x2<<setw(14)<<"x1=x2"<<endl;
i++;
x3=x1;
x1=x2;
}while( fabs(x1-x3) >= e);
cout<<"\nTHE REQUIRED Root
IS ="<<x2;
return 0;
}
NOTE: The
above code is implemented in c++ and written using code blocks libraries.
No comments:
Post a Comment