Gauss Elimination method is one of the procedures to
solve the simultaneous algebraic equation.
In
this method, the unknowns are eliminated successively and the system is reduced
to an upper triangular system from which the unknown are found by back
substitution. The method is quite general and is well adapted for computer
operations.
Program Code
#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()
{
int i,n,j,k;
float pivot,f,x[10],sum=0;
float a[10][10];
printf("\n\n\t\tEnter the no of
eqns\n\t\t");
scanf("%d",&n);
printf("\n\t\tEnter the
matrix:\n");
for(i=1;i<=n;i++)
{
for(j=1;j<=n+1;j++)
{
printf("\t\ta[%d][%d]=",i,j);
scanf("%f",&a[i][j]);
}
}
for(k=1;k<=n-1;k++)
{
pivot=a[k][k];
for(i=k+1;i<=n;i++)
{
f=a[i][k]/pivot;
for(j=k;j<=(n+1);j++)
{
a[i][j]=a[i][j]-f*a[k][j];
}
}
}
printf("\tMatrix in echelon
form:\n\n");
for(i=1;i<=n;i++)
{
for(j=1;j<=(n+1);j++)
{
printf("\t%f",a[i][j]);
}
printf("\n");
}
x[n]=(a[n][n+1])/a[n][n];
for(i=n-1;i>=1;i--)
{
sum=0;
for(j=i+1;j<=n;j++)
{
sum=sum+a[i][j]*x[j];
}
x[i]=(a[i][n+1]-sum)/a[i][i];
}
printf("\n\tThe solution is:\n");
for(i=1;i<=n;i++)
{
printf("\n\tx%d =
%f\t",i,x[i]);
}
getch();
}
Sample output:
In this output only two equations
is taken for references. Any number of equations can be taken.
The output of Gauss Elimination method is shown as:
Note:
This code is implemented in C programming using TurboC++ libraries.
No comments:
Post a Comment